Simulation in F1 – and Gary Paffett

The news that Williams has taken on Gary Paffett to do simulator work says a number of things to me. Paffett is a hugely experienced virtual (and real) test driver, having spent eight years and done hundreds of hours driving McLaren’s state-of-the-art simulators, and gathering data that has been used to help design and develop the Woking team’s F1 cars. He left McLaren at the end of 2014 as a result of McLaren changing engine partners from Mercedes-Benz to Honda. His input was much appreciated at McLaren.

“His technical input, on test track and in simulator alike, has been hugely important to us,” said McLaren’s Jonathan Neale at the time.

Paffett is closely linked to Mercedes and so a job with Williams is no great surprise, as the Grove team is clearly the number two Mercedes operation after the factory team., although Force India and Manor Racing would like to change that.

The other point that I think a lot of people miss is just how important simulators are in Formula 1 today – and the effect they can have on performance. A lot if teams don’t like giving away details about their simulators, indeed I remember one team refusing to even tell me where in the building it was located because that might help me figure out how big it was, as some of these facilities are now the size of squash courts, to allow the cars to move around, thus giving the drivers a better sense of motion, as static simulators are deemed to be less accurate as the drivers do not get the same feeling about the cars. This is often a sub-conscious thing, relating to the motion sensors in the human body.

To explain more, here is an article I wrote some years ago on the subject:

It is no secret that Formula 1 teams use advanced simulation technologies. Today, computational fluid dynamics, windtunnel development, transient dynos and seven-post rigs are all standard in F1. The goal of all of these expensive tools is to ensure that the racing cars are as competitive as possible – and as reliable.

Simulation techniques in Formula 1 go far beyond that. Computers crunch away to work out every conceivable race strategy and increasingly the teams are realising the value of driver-in-the-loop simulators. This means that rather than engineers playing with computers, as happens with other simulation, the F1 drivers sit in “virtual” F1 cars.

There may be a belief that the F1 simulators are simply glorified computer games, which have a value in teaching drivers circuits that they have never visited, but the story is much more complicated than that.

Simulator technologies came to Formula 1 first because teams recognised that they could make money by working with computer gaming companies in order to create entertainment for the public. The first racing computer game was Gran Trak 10, a single-player racing arcade game released by Atari in 1974. The first big success was Pole Position, a Namco game in which a player had to complete a lap in a certain amount of time in order to qualify for a race at the Fuji Speedway. If successful the car would race with other cars. As home computers developed in the 1980s the first true F1 game appeared, called Formula One Grand Prix (F1GP), which was released in 1992.

Nowadays you can sit at home and drive F1 cars, playing with many different parameters such as the fuel loads, tyre wear and so on.

Home computers can only do so much. One may have a steering wheel and pedals, but there are none of the real sensations of what it is really like to drive an F1 car.

In recent years Formula 1 engineers have begun to realise that advanced simulation can be a tool not just for driver training, but also to work on technical solutions and set-up conundrums. Simulation can improve lap times and at the same time save time and money by giving the team a way to test without needing to put the cars on the race track. Virtual testing is now a reality.

Modern simulation technology can be traced back to the 1920s when an American engineer called Edwin Link, who had begun his career as a builder of organs and nickelodeons, used his knowledge of pneumatic pumps and valves to create the first flight simulator in the out of the way town of Binghamton, in upstate New York. At the time teaching new pilots to fly in cloud, using only their instruments, was both expensive and dangerous and Link felt that a machine could do the job more cheaply and safely. The result was an enclosed aircraft cockpit, which became known as the Blue Box. The pilot sat inside this device and used the controls to “fly” the device using instruments alone. The Blue Box produced pitch, roll and yaw motions controlled by the pilot. The prototype appeared in 1929 but Link’s business did not really take off until 1934, when the US Army Air Force purchased four of the machines after a series of trainee pilots died while doing instrument training. For Link the advent of World War II created a boom for his ever-improving machines. He provided 10,000 of them and more than half a million aircrew from different nations learned to fly on these machines. The development included large scale systems aboard which entire bomber crews trained together.

The boom in civil aviation after World War II led Link to develop simulators for the new generation of jet engines. By the 1960s the technologies had changed with pneumatic actuators being replaced by hydraulic versions and the new simulators were built to include what was known as “six degrees of freedom”, which meant that the platforms on which the cockpits were mounted were able to generate roll, pitch and yaw plus surge (longitudinal), heave (vertical) and sway (lateral). Visuals were introduced, with the earliest versions using cameras that filmed models of the ground and then in the 1970s wide-angled screens with film footage and later curved mirrors and ultimately plasma screens with virtual imagery.

The development was not restricted to planes, with the advent of gaming and a diversification into ground vehicles, notably armoured vehicles. These simulators enabled the army to create battlefield environments in order to train its crews. The automotive industry also started looking at the potential of simulators to help the companies involved understand how drivers behaved in different situations, thus enabling the designers to improve dashboard ergonomics and to strengthen the safety features based on the accidents that might occur because of drivers becoming tired or being distracted. Military demands meant that development was constant with innovations such as G-seats, belt-tightening devices and pneumatic cushions, all of which helped to create the impression of the pressures that a driver would feel at certain speeds, in addition to 360-degree domes to create a totally virtual environment.

Today there are reckoned to be 1200 professional flight simulators in the world, designed and developed by companies such as Canada’s CAE, France defence giant Thales and US firms like Flight Safety International and Northrop. The majority of these use motion platforms known as Hexapods or Stewart Platforms, which feature six independently-actuated legs, the lengths of which change in order to orient the platform. Sound and imagery add to the environment created.
The accuracy of simulators is based on the interaction of these three elements, but it is an area in which there has been much controversy between the mechanical engineers and advanced medical researchers, who argue that it is not very realistic because of the way in which the human body reacts to stimuli. This is a very complex question because of the wide range of sensory inputs that the brain integrates. The medical men argue that the reactions of the muscles and joints (the proprioceptive system) do not tie in with the others and also believe that the vestibular system (the balance mechanisms in the inner ear) is also affected. They argue that this means that depth perceptions are not always correct.

One of the problems with some of the simulators is that they induce sickness for some drivers because of a discrepancy between the perception of visual motion and the corresponding motion cues. This led the engineers to look at ways to overcome the problem and to the development of what are called dynamic simulators, which have the entire hexapod moving around to meet the body’s need for the sensation of real motion.

The bottom line is that there is no such thing as a standard simulator. Each one is a prototype and the most interesting element in their use in F1 is that most of the systems have been developed in-house by the teams, rather than being developed with specialist partnerships. One thing that is clear is that the experts on simulators have also been moving as teams realise the value of what they do not have.

There is general agreement that the two best systems at the moment are the two that have had the most development: McLaren is believed to have spent as much as $40m on its system and used British Aerospace technology, developed for the Eurofighter aircraft. At Woking the driver sits in a full-size F1 monocoque, in front of a large, curved plasma screen. The whole device is mounted on a hexapod which moves around an area about the size of a professional basketball court, in response to the driver’s steering and pedal input. This is the only dynamic F1 simulator in F1 at the moment. It is believed that the best of the fixed-base units is at Williams where the development has been amazingly cost-effective, with a budget of probably a tenth of what has been spent at McLaren. Williams is believed to be able to stream data back to its factory after a practice session so that it can use the simulator to try out other set-ups, which can then be tried overnight to ensure that the cars have the optimum set-ups based on absolutely current data.

Up to now Ferrari has been using a fairly simple unit, which is housed at the Fiat Research Centre in Turin. The team had recently announced a partnership with the US firm Moog. This will be the very latest dynamic device.

“The dynamic driving simulator is a new step for us in developing virtual tests that give drivers the true feel of a real environment and direct feedback on their actions,” says Scuderia Ferrari’s head of R&D Marco Fainello. “It will support the new breed of tests we are planning to launch.”
Red Bull Racing tried a relationship with a specialist company but is now doing its own thing and intends to have a dynamic unit as soon as one can be built. Honda is doing likewise. Renault has an arrangement to use a system created by a local specialist firm, but they don’t want to give details. The team admits that the system is not on par with other teams. Force India has its own very basic system but recently tried out a facility at the old Upper Heyford airbase which is owned by Wirth Research, built by Nick Wirth, who was technical director of the Benetton team before it became Renault. It maybe that this is also Renault’s secret facility. Oddly, Toyota and BMW say that they are not using any simulators at the moment, although both firms have advanced road car simulators: Toyota having the world’s largest driving simulator at the Higashifuji Technical Centre in Japan and BMW having a similar unit in Munich. Both teams say that they do not use a simulator at all.

What is clear is that the teams believe that the F1 simulators are the most advanced of all.

“I think they are better than the best flight simulators,” says Red Bull Racing’s Geoff Willis. “Those are now more about training and not so much about performance.”

And do they work?

“It’s pretty useful,” says Williams’s Patrick Head, although he won’t say more than that.

The other thing to watch is whether or not the F1 teams can find a way to make money from the systems. In the world of computer gaming, the race is on to create cost-effective simulation systems that could be sold to the to public. The Nintendo Wii is a move in that direction with sensors that transform the movement of the players into actions in the game. The next leap forward will probably be a device to give players the same sensations as those being simulated. Since the end of 2006 an astonishing 30m Wiis have been sold. They cost around $250, which means that it is a $7.5bn market. The first company to get to the markets with simulation technology as is seen in F1 stands to make even bigger profits. In the meantime money can still be made. Recently the Costa cruise ship line bought a series of F1 simulators from a Dutch company called VESC to try to attract customers (mainly Italians) to a number of its ships. The fullscale machines, complete with hexapods, are now cruising the world.

12 thoughts on “Simulation in F1 – and Gary Paffett

  1. Good to see Gary back in F1. He has been with Mclaren horse so many years. When Honda took over he was dropped like a sack of manure, as was K-Mag.
    Now K-Mag back & so is Paffet (in a technical input position). Would have been good to see how Paffet raced in F1…if he had got the chance. But they went with Jensen instead.

    1. Dropped like a sack of manure? Where do you get that from? Do you expect McLaren continue to use customer Mercedes engines just to keep Gary in a job? He left to continue to drive for Mercedes in DTM. He was obviously not going to drive for Mercedes and also test for McLaren Honda was he?

  2. In regards to computer games and actual driving, I’ve had reasonable steering wheel for my PS3 and play F1 games all the time, and you break with your left foot as it only has two pedals. Anyway my other half paid for me to have a go in a single seater, I sat in it and it really just did feel like the computer game, so much so, that as I headed towards the first corner, I tried to brake with my left which just depressed the clutch, took a second or two for my brain to figure out it should be my right foot. And I have to say driving it really did feel like the computer game, so much so, I found it really easy and was comfortably the fastest person out there, but that wasn’t talent, effectively the PlayStation had taught me how to drive, so I can only imagine how amazing what the f1 teams use is like.

  3. Here’s the software that powers most of the F1 grids’ simulators;
    http://rfactor.net/web/rf2/

    Well – not quite *that* software – the engine that powers rFactor is what the F1 teams use. They basically build a mod and plug in the numbers that correlate with their aero computations and telemetry data.

    A few years ago it was good watching Red Bull’s videos of Mark & Seb lapping in the simulator. You could then jump online and download the same base tracks they use.

    One chap was very chuffed that they’d used his freely-available version of Suzuka (IIRC) and tweaked it slightly.

  4. You do not specifically mention VAG but presumably they have a decent working Racing Simulator for both Porsche and Audi.? ? Thanks

    1. He was played by Arte Johnson.

      Also, there was an episode of “The Avengers” where there was a partial Lotus chassis with a movie screen in front of it showing the Monaco GP circuit. The ‘driver’ received an electric shock if he went off or crashed. The first F1 simulator?

      You ain’t the only oldster here!

  5. While Binghamton is several hours drive from New York and Philadelphia, it used to be a major transportation and manufacturing hub. IBM was founded nearby and nearby Endicott was one of their major plants. Actually upstate New York had some major industries: Kodak was in Rochester and Corning Glass in Corning. A combination of railroads, Erie Canal and 19th century investments in colleges such as Cornell which isn’t far from Binghamton. But for various reasons, upstate NY has faded. It 1900 Buffalo had the highest per capita in the country. By 2000, only Detroit was worse.

  6. Had the pleasure recently of trying out a friends iRacing rig in his games room. He said it had cost him something in the order of $12 -14k USD, so obviously nothing to the order of the F1 team cost or tech level, but a little better than the average home console/PC.

    His setup has yaw, and roll, some motion simulation provided by powerful boom boxes, some full on motion software tweaking, large display, seriously heavy duty pedals ($900 USD alone), all topped off with an Occulus Rift VR goggle set. My description does not do justice as I got lost when he explained the finer points to me.

    I wouldn’t try to compare it to an F1 simulator especially as I have never been near one. However, it was incredible. Lapping around Nordschleife, full track or thereabouts, a circuit I knew well from non VR, cheaper pedal/wheel setups ($400 G25, no motion etc), it was sensational. I giggled lots, like a school kid let loose in his own personal playground. Felt nauseous for the first two minutes adjusting to the VR but after that felt like I could stick my hand out and scrape my fingertips in the Karussell. Had a ball all afternoon, I kept looking around in VR and saying stupid stuff like “look Nurburg Castle”.

    That was the best taste that I have had and it really was something amazing in terms of home simulators, and I know it is a far cry from more sophisticated home systems. I could only begin to imagine how realistic and challenging a proper in house F1 system must be. Too full on for me probably, I doubt I would have the strength to fully depress the brake pedal.

  7. Thanks Joe, that’s fascinating.

    It would be very interested to read an updated overview of the situations at the different teams in GP+ some time. (Or maybe there has already been one and I’ve missed it). However, I appreciate it’s probably not an area the teams are all that forthcoming on.

Leave a reply to Peter Geran Cancel reply